Рефераты

Исследования великих математиков. Основные математические формулы

Древнегреческие математики считали “настоящими” только натуральные числа. Постепенно складывалось представление о бесконечности множества натуральных чисел.

В III веке Архимед разработал систему обозначения чисел Наряду с натуральными числами применяли дроби. В практических расчетах дроби применялись за две тысячи лет до н. э. в Древнем Египте и Древнем Вавилоне. Долгое время полагали, что результат измерения всегда выражается или в виде натурального числа, или в виде отношения таких чисел, то есть дроби. Древнегреческий философ и математик Пифагор учил, что элементы чисел являются элементами всех вещей, весь мир в целом является гармонией и числом. Сильнейший удар по этому взгляду был нанесен открытием, сделанным одним из пифагорейцев. Он доказал, что диагональ квадрата несоизмерима со стороной. Отсюда следует, что натуральных чисел и дробей недостаточно, чтобы выразить длину диагонали квадрата со стороной 1. Есть основание утверждать, что именно с этого открытия начинается эра теоретической математики: открыть существование несоизмеримых величин с помощью опыта, не прибегая к абстрактному рассуждению, было невозможно.

Следующим важным этапом в развитии понятия о числе было введение отрицательных чисел, сделанное китайскими математиками за два века до н. э. Отрицательные числа применял в III веке древнегреческий математик Диофант, знавший уже правила действия над ними, а в VII веке эти числа уже подробно изучили индийские ученые, которые сравнивали такие числа с долгом. С помощью отрицательных чисел можно было единым образом описывать изменения величин. Уже в VIII веке было установлено, что квадратный корень из положительного числа имеет два значения — положительное и отрицательное, а из отрицательных чисел квадратный корень извлекать нельзя: нет такого числа , чтобы .

В XVI веке в связи с изучением кубических уравнений оказалось необходимым извлекать квадратные корни из отрицательных чисел. В формуле для решения кубических уравнений вида  кубические и квадратные корни: .

Эта формула безотказно действует в случае, когда уравнение имеет один действительный корень (), а если оно имеет три действительных корня (), то под знаком квадратного корня оказывалось отрицательное число. Получалось, что путь к этим корням ведет через невозможную операцию извлечения квадратного корня из отрицательного числа. Вслед за решением уравнения 4-й степени математики усиленно искали формулу для решения уравнения 5-й степени. Но Руффини (Италия) на рубеже XVIII и XIX веков доказал, что буквенное уравнение пятой степени  нельзя решить алгебраически; нельзя выразить его корень через буквенные величины a, b, c, d, e с помощью шести алгебраических действий (сложение, вычитание, умножение, деление, возведение в степень, извлечение корня).

В 1830 году Галуа (Франция) доказал, что никакое общее уравнение, степень которого больше четырех, нельзя решить алгебраически. Однако всякое уравнение n-й степени имеет (если рассматривать и комплексные числа) n корней (среди которых могут быть и равные). В этом математики были убеждены еще в XVII веке, основываясь на разборе многочисленных частных случаев, но лишь на рубеже XVIII и XIX веков упомянутая теорема была доказана Гауссом.

Итальянский алгебраист Дж. Кардана в 1545 г. предложил ввести числа новой природы. Он показал, что система уравнений , не имеющая решений во множестве действительных чисел, имеет решения вида , , нужно только условиться действовать над такими выражениями по правилам обычной алгебры и считать, что . Кардана называл такие величины “чисто отрицательными” и даже “софистически отрицательными”, считал их бесполезными и старался их не употреблять. В самом деле, с помощью таких чисел нельзя выразить ни результат измерения какой-нибудь величины, ни изменение какой-нибудь величины. Но уже в 1572 году вышла книга итальянского алгебраиста Р. Бомбелли, в которой были установлены первые правила арифметических операций над такими числами, вплоть до извлечения из них кубических корней. Название “мнимые числа” ввел в 1637 году французский математик и философ Р. Декарт, а в 1777 году Л. Эйлер, один из крупнейших математиков XVIII века, предложил использовать первую букву французского слова imaginaire (мнимый) для обозначения числа  (мнимой единицы). Этот символ вошел во всеобщее употребление благодаря К. Гауссу. Термин “комплексные числа” также был введен Гауссом в 1831 году. Слово комплекс (от лат. complexus) означает связь, сочетание, совокупность понятий, предметов, явлений, образующих единое целое.

В течение XVII века продолжалось обсуждение арифметической природы мнимых чисел, возможности дать им геометрическое обоснование.

Постепенно развивалась техника операций над мнимыми числами. На рубеже XVII и XVIII веков была построена общая теория корней n-х степеней сначала из отрицательных, а за тем из любых комплексных чисел, основанная на следующей формуле английского математика А. Муавра (1707): . С помощью этой формулы можно было вывести формулы для косинусов и синусов кратных дуг.

Л. Эйлер вывел в 1748 г. замечательную формулу: , которая связывала воедино показательную функцию с тригонометрической. С помощью формулы Л. Эйлера можно было возводить число e в любую комплексную степень. Любопытно, например, что . Можно находить sin и cos от комплексных чисел, вычислять логарифмы таких чисел, то есть строить теорию функций комплексного переменного.

В конце XVIII века французский математик Ж. Лагранж смог сказать, что математический анализ уже не затрудняют мнимые величины. С помощью мнимых чисел научились выражать решения линейных дифференциальных уравнений с постоянными коэффициентами. Такие уравнения встречаются, например, в теории колебаний материальной точки в сопротивляющейся среде. Еще раньше швейцарский математик Я. Бернулли применял комплексные числа для решения интегралов.

Хотя в течение XVIII века с помощью комплексных чисел были решены многие вопросы, но еще не было строго логического обоснования теории этих чисел.

В конце XVIII – начале XIX вв. было получено геометрическое истолкование комплексных чисел. Датчанин К. Вессель, француз Ж. Арган и немец К. Гаусс независимо друг от друга предложили изобразить комплексное число  точкой на координатной плоскости. Позднее оказалось, что еще удобнее изображать число не самой точкой M, а вектором , идущим в эту точку из начала координат. При таком истолковании сложению и вычитанию комплексных чисел соответствуют эти же операции над векторами. Вектор  можно задавать не только его координатами a и b, но и длиной r, углом j, который он образует с положительным направлением оси абсцисс. При этом ,  и число z принимают вид , который называется тригонометрической формой комплексного числа. Число r называют модулем комплексного числа z и обозначают . Число φ называют аргументом z и обозначают ArgZ. Упомянутая ранее формула Эйлера позволяет записать число z в виде .

Геометрическое истолкование комплексных чисел позволило определить многие понятия, связанные с функцией комплексного числа, расширило область их применения.

Стало ясно, что комплексные числа полезны во многих вопросах, где имеют дело с величинами, которые изображаются векторами на плоскости: при изучении течения жидкости, задач теории упругости.

После создания теории комплексных чисел возник вопрос о существовании “гиперкомплексных” чисел — чисел с несколькими “мнимыми” единицами. Такую систему вида , где , построил в 1843 году ирландский математик У. Гамильтон. Гиперкомплексные числа он назвал “кватернионами”. Правила действия над кватернионами напоминают правила обычной алгебры, однако их умножение не обладает свойством коммутативности (переместительности): например, , а .

Большой вклад в развитие теории функций комплексного переменного внесли русские и советские ученые. Н. И. Мусхелишвили занимался ее применениями к упругости, М. В. Келдыш и М. А. Лаврентьев — к аэро- и гидродинамике, Н. Н. Богомолов и В. С. Владимиров — к проблемам квантовой теории поля.
Реклама
Банк рефератов
Сайт для студентов содержит огромное количество разных рефератов и по различным темам.
В банке рефератов вы можете бесплатно скачать работу по выбранной теме.
Самые новые и лучшие рефераты в расширенной коллекции.
Скачать реферат
Реклама
Материалы




Рефераты - качественные, оригинальные рефераты на различные темы